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ON EVALUATION OF ELECTRIC CONDUCTIVITY BY MEAN OF A
THERMODYNAMICAL MODEL FOR DIELECTRIC RELAXATION

PHENOMENA. AN APPLICATION TO LIVER TISSUE

VINCENZO CIANCIO a∗ AND FRANCESCO FARSACI b

ABSTRACT. In this paper we study the electric conductivity of continuous media in the
contest of the non-equilibrium thermodynamics with internal variables. Namely, we shall
use some recent results that allow to infer conductivity as function of the frequency of per-
turbation, only by means of dielectric measurements. Although the results obtained can be
applied to several materials, we have applied them to the study of electric conductivity on
porcine liver tissue obtaining the spectrum frequency of conductivity (real and imaginary
part).

Dedicated to the 100–th anniversary
of Professor Giuseppe Grioli.

1. Introduction.

At present one of the most important treatment of cancer is the resection of biological
tissues affected by this pathology. But unfortunately many patients affected by cancer
cannot be treated by mean of resection. So, in the last years have been developed alternative
techniques which act locally without resects the part. One of this consists in the locally
action of a alternating electric current at suitable frequency depending on the type of cancer
and on his pathological level [39]-[41]. This causes locally inhibition growth of the tumor.

Moreover alternating current electrical stimulation enhanced chemotherapy. Obviously
this last technique is no more invasive then resection one. Since this cause relevant electri-
cal current flow through patients, (for low frequency, the conductivity in biological tissue
is notable, dominated by the influence of electrolytic conduction caused by the presence
of water as solvent), it results very important the knowledge of the electric conduction
properties of the tissues for a detailed therapy [42].

On the other hand it results difficult conductivity measurements in vivo by mean of
usual techniques, so we think that it can result useful to develop a model, in the contest
of the not equilibrium thermodynamics with internal variables, which only by means of
dielectric measurements (which result minimally invasive), is able to evaluate conduction
properties as function of the frequency. Obviously we refer to ionic conduction for low
frequencies.
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A5-2 V. CIANCIO AND F. FARSACI

In the present work we develop this model in the framework of not equilibrium thermo-
dynamics with internal variables taking into account recent results [21] -[33] on the study
of dielectric properties of material and in particular considering a model by us developed.

2. Remarks on thermodynamic theory with vectorial internal degrees of freedom for
dielectric relaxation phenomena.

The non-equilibrium thermodynamic theory, proposed [1]-[5] and developed in [6]-
[20], postulates that the usual variables are insufficient for study a medium that is subject
to perturbations.

Generally, the specific entropy s will be (for an elastic dielectric) function of the specific
internal energy u, the strain tensor εik and the specific polarization p. In [34]-[37] a new
vector field p(1), which play the role of vectorial thermodinamical internal variable, is
introduced and the entropy is rewrited as

s = s

u, εik,p,p

(1)


(1)

The absolute temperature T and the vector fields E(eq) and E(1) are defined by

T−1 =
∂

∂u
s

u, εik,p,p

(1)

, (2)

E(eq) = −T
∂

∂p
s

u, εik,p,p

(1)

, (3)

E(1) = T
∂

∂p(1)
s

u, εik,p,p

(1)

, (4)

In (3) and (4) E(eq) and E(1) are, respectively, the electric field in an equilibrium thermo-
dynamical state and the vector thermodynamical affinity conjugate to the vector internal
variable.

In particular it was shown that the vectorial internal variable which influences the polar-
ization gives rise to dielectric relaxation phenomena and with the aid of such variable one
can split up the polarization into two parts

p = p(0) + p(1) . (5)

The vectors p(0) and p(1) are called specific partial polarization vectors and both changes
in these vectors are irreversible phenomena. Of course the polarization vectors are defined
by

P = ϱp, P (0) = ϱp(0), P (1) = ϱp(1), (6)

where ϱ is the mass density and so from (5) we have:

P = P (0) + P (1) . (7)

In the theory it was introduced a new vector Eir) defined as:

E(ir) def
= E − E(eq) , (8)

where E is the electric field which appear also in the Maxwell’s equations.
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In refs.[34]-[37], if the mass density is constant and neglecting possible cross-effects
among dielectric relaxation and other irreversible phenomena, for isotropic media, the fol-
lowing results were obtained:

• the phenomenological equations for dielectric relaxation phenomena:
E(ir) = L(0,0) d

dt
P

d

dt
P (1) = L(1,1)E(1) ,

(9)

• the linear equations of state : E(eq) = a(0,0)P (0) ,

E(1) = a(0,0)P − a(1,1)P (1),

(10)

In the equation (9) the vector E(ir) is an internal electric field and ; the quantities L(0,0)

and L(1,1) are called phenomenological coefficients and the first one has the dimension
of a resistance and it is connected to the irreversible proceses related to change of the
polarization vector P , whereas the second one has the dimension of a conductivity and it
is related to change of P (1) and to the relative intensive variable conjugated to it. In the
equation (10) the quantities a(0,0) and a(1,1) are state coefficients which have the dimension
of a reciprocal dielectric constant [30], [31].

It is seen that three types of internal electric fields appear in the formalism of theory:
E(eq),E(1) and E(ir), while the polarization is additively composed of two parts: P (0)

and P (1) (see (7)).
All the coefficients L(0,0), L(1,1), a(0,0) and a(1,1) are constants with respect to time but
change with respect to frequency ω of the pertubation.
By eliminating from the eqs. (7), (9) and (10) the internal fields E(eq) and E(1) and the
two fields P (0) and P (1) of which the polarization is composed, the following dynamical
constitutive equation for dielectric relaxaxtion in isotropic media is obtained:

χ
(0)
(EP ) E +

d

dt
E = χ

(0)
(PE) P + χ

(1)
(PE)

d

dt
P + χ

(2)
(PE)

d2

dt2
P (11)

where 

χ
(0)
(EP ) = a(1,1) L(1,1) ,

χ
(0)
(PE) = a(0,0) (a(1,1) − a(0,0))L(1,1) ,

χ
(1)
(PE) = a(0,0) + a(1,1) L(0,0) L(1,1) ,

χ
(2)
(PE) = L(0,0) .

(12)

From (12) we see that

σ =
1

χ
(0)
(EP )

(13)
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is the relaxation time.
In the following we consider the case in which almost one component of the polarization
and electric fields is different from zero.

3. Theory of linear response.

Schematically a linear response experiment is represented in Fig.1

Figure 1. Schematic response experiment

It consists in the application of a pertubation f(t) to a system S and in the analysis of
the output g(t) from the system.

In the linear response theory the relation between g(t) and f(t) is represented by the
convolution

g(t) = f(t)⊗ h(t) (14)

where h(t) is the unknown quantity of the problem.
An important result of this theory is that harmonic input f(t) = Aeiωt always corre-

sponds harmonic output of the same frequency but different phase and amplitude [29]

g(t) = B(ω)ei[ωt+ϕ(ω)] . (15)

Now, we consider a generic dielectric medium placed between the plain plates of a ca-
pacitor to which a sinusoidal voltage is applied. Consequently we have on the plates a
sinusoidal surface charge, the density of which is characterized by the normal component
of polarization vector P = P ·n (n is the unit normal to the plates) generating a sinusoidal
electric field inside capacitor.

The linear response theory predict that if P (cause) evolves sinusoidally, i.e.

P = P0e
iωt , (16)

then the normal component (E = E·n) of electric field inside the capacitor is characterized
by

E = E0(ω)e
i[ωt+ϕ(ω)] . (17)

The polaritation P is defined as

P = χ∗(ω)E = (χ1(ω)− i χ2(ω))E. (18)
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where χ∗ is the complex dielectric susceptibility of the material and χ1 and χ2 are the
corresponding real and immaginary parts.
From (18), by virtue of (16) and (17) one has:

Γ∗(ω)
def
=

1

χ∗(ω)
=

E0(ω)

P0
ei ϕ(ω). (19)

By putting
Γ∗(ω) = Γ1(ω) + iΓ2(ω) . (20)

from (19) we obtained:
Γ1(ω) =

χ1(ω)

[χ
1
(ω)]2 + [χ

2
(ω)]2

=
E0(ω)

P0
cos[ϕ(ω)] ,

Γ2(ω) =
χ

2
(ω)

[χ1(ω)]
2 + [χ2(ω)]

2
=

E0(ω)

P0
sin[ϕ(ω)] .

(21)

The quantities Γ1(ω) and Γ2(ω) are called storage and loss moduli, respectively, and are
related to non dissipative phenomena and to dissipative ones [38].
From the equation (21) one has:

χ
1
(ω) =

Γ1(ω)

[Γ1(ω)]2 + [Γ2(ω)]2
,

χ
2
(ω) =

Γ2(ω)

[Γ1(ω)]2 + [Γ2(ω)]2
.

(22)

In the following we consider all vectors in the complex form.
The immaginary part of P and E (see (16) and (17)) are P = P0 sin(ωt) ,

E = E0 sin[(ωt) + ϕ] .
(23)

and by virtue of (21) we have:

E = P0 Γ1(ω) sin(ωt) + P0 Γ2(ω) cos(ωt) . (24)

By substituting the equation (23)1 into the equation (11) a differential equation for E can
be obtained. By integration of this equation one has

E =
P0σ

1 + σ2ω2


ω

χ
(1)
(PE) − χ

(0)
(PE)σ + L(0,0)σω2


cos(ωt) +

χ
(0)
(PE) + (χ

(1)
(PE)σ − L(0,0))ω2


sin(ωt)


(25)

By comparing this result with (24) we have the following expressions:
Γ1(ω) =

σ

1 + σ2ω2


χ
(0)
(PE) +


χ
(1)
(PE)σ − χ

(2)
(PE)


ω2


,

Γ2(ω) =
σ ω

1 + σ2ω2


χ
(1)
(PE) − χ

(0)
(PE)σ + χ

(2)
(PE)σω

2

,

(26)
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From (12) and (26) one obtaines

a(0,0) = Γ1(ω) +
Γ
(1)
2 (ω)

ωσ
,

a(1,1) =


Γ
(1)
2 (ω) + ω σ Γ1(ω)

2
ω σ (1 + ω2σ2) Γ

(1)
2 (ω)

,

L(1,1) =
ω (1 + ω2σ2) Γ

(1)
2 (ω)

Γ
(1)
2 (ω) + ω σ Γ1(ω)

2 ,

(27)

where
Γ
(1)
2 (ω) = Γ2(ω) − ω L(0,0) , (28)

We observe that from (24), by using (9)1 one has:

E = PΓ1(ω) +
E(ir) Γ2(ω)

ω L(0,0)
. (29)

By comparing (29) and (8) we obtain

E(eq) = PΓ1(ω) . (30)

and
Γ2 = ω L(0,0) . (31)

It is known [38] that for low frequency Γ1(ω) and Γ2(ω) are constant and their values can
be determined by experimental evalutations.

4. Complex conductivity for low frequency.

In the linear approximation, the electrodynamic properties of isotropic materials are
studied by using the followig phenomenological relations:

D = ε∗ E , j = σ∗ E , (32)

where D is the electric displacement field, j is the density of electric current, ε∗ = ε1−iε2
is the complex dielectric permittivity and σ∗ = σ1+ iσ2 is the complex conductivity [38].
By putting

χ∗ = ε∗ − ε0 , (33)
where ε0 is constant dielectric permittivity in vacuum, from the relation (18) one has: χ1 = ε1 − ε0 ,

χ2 = ε2 .
(34)

In agreement with the linear response theory (see section 3) we consider that the input is

D = D0 e
iωt, , (35)

and the output is given by
E = E0 e

i[ωt−ϕ(ω)], , (36)
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By using the following Maxwell’s equation

rotH = j +
∂

∂t
D , (37)

where H is the magnetic displacement field, by utilizing (32) and (35) we have:

rotH = η∗
∂

∂t
E , (38)

where

η∗
def
= η1 − i η2 = ε∗ − i

σ∗

ω
. (39)

is the total complex dielectric coefficient which can be measuremented from the experi-
ments.
By separating the real and immaginary parts of the quantities which appear in (39) and in
virtue of (22) and (34) one obtaines:

σ1 = ω

η2 − Γ2(ω)

[Γ1(ω)]2 + [Γ2(ω)]2


,

σ2 = ω

η1 − ε0 − Γ1(ω)

[Γ1(ω)]2 + [Γ2(ω)]2


.

(40)

The relations (40) show that the complex conductivity (σ∗) can be obtained from the values
of the total complex dielectric coefficient (η∗) and from storage (Γ1) and loss (Γ2) moduli.

In ref.[33] it was shown that for low frequency one has:
Γ1(ω) = Γ1R +

Γ2R ω σ

1 + ω2 σ2
,
 ω

ωR
− 1


,

Γ2(ω) = Γ2R

 ω

ωR
+ ω2 σ2

1 + ω2 σ2


.

(41)

where Γ1R = Γ1(ωR) and Γ2R = Γ2(ωR) being ωR the minimum value of ω in the
range of low frequency.
In the case of a porcine liver tissue in Fig.2 the experimental values of real and immaginary
parts of η∗ are plotted and in Fig.3 we have the storage and loss moduli. Finally, in Fig.4,
by utilizing the equations (40) and (41) the corrispondent complex dielectric coefficients
are obtained.

5. Conclusion.

In this work we have developed a method, in the contest of the not equilibrium ther-
modynamics with internal variables which, only by means of dielectric measurements, is
able to evaluate electric conduction properties as function of the frequency. Since dielec-
tric measurements results minimally invasive this technique can be applied to the study of
biological (in vivo) tissues. Moreover it furnish important information on some thermody-
namic properties of the tissues.
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Figure 2. Real and immaginary part of η∗ for porcine liver tissue.
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Figure 3. Storage and loss moduli for porcine liver tissue.

We have applied these results to physiological porcine tissue. In particular, the fit by mean
of Havriliak-Negami (HN) phenomenological equation [38] of complex dielectric permit-
tivity (imaginary part) data of a porcine liver tissue at 20C, has furnished a dc conductivity
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1

t ?

m

m

Figure 4. Real and immaginary part of σ∗ for porcine liver tissue.

σ = 6.5 ·10−3Ω−1 cm−1 . This value is in agreement with the values obtained by applying
our theoretical results (see fig. 4). Indeed we have obtained a set of values as function of
the frequency and the dc value is collocated inside the range of these values. It is important
to observe that the knowledge only of dc conductivity can result insufficient for a detailed
therapy based on locally action of a alternating electric current. So the result by us obtained
(i.e. the knowledge of conductivity as function of the frequency) will be very useful for a
mired therapy and future develop of this technique.
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